Returns data for the time series chart for specified metric ID and area ID.
Contains an array of two areas in Areas, one of which is the National data
with the other corresponding to the provided area ID. TargetValue is also
returned in the Data dictionary.
Details
CVD Prevent API documentation: Indicator time series metrics
See also
cvd_indicator_list(), cvd_indicator_metric_list(), cvd_indicator(),
cvd_indicator_tags(), cvd_indicator_details(), cvd_indicator_sibling(),
cvd_indicator_child_data(), cvd_indicator_data(), cvd_indicator_metric_data(),
cvd_indicator_raw_data(), cvd_indicator_nationalarea_metric_data(),
cvd_indicator_priority_groups(), cvd_indicator_pathway_group(), #
cvd_indicator_group(),
cvd_indicator_person_timeseries(), cvd_indicator_metric_systemlevel_comparison(),
cvd_indicator_metric_area_breakdown()
Examples
# List data for Salford South East PCN (area ID 705) for 'AF: treatment with
# anticoagulants' for women people aged 60-79 years (metric ID 130):
cvd_indicator_metric_timeseries(metric_id = 130, area_id = 705) |>
dplyr::select(AreaName, TimePeriodName, TimePeriodID, Value) |>
tidyr::pivot_wider(
names_from = AreaName,
values_from = Value
)
#> # A tibble: 16 × 4
#> TimePeriodName TimePeriodID England `Salford South East PCN`
#> <chr> <int> <dbl> <dbl>
#> 1 To March 2020 1 88.2 85.9
#> 2 To March 2021 2 88.6 86
#> 3 To September 2021 3 88.9 88.8
#> 4 To March 2022 4 89.3 90
#> 5 To June 2022 5 89.4 90.2
#> 6 To September 2022 6 89.6 90.6
#> 7 To December 2022 7 90.0 91.7
#> 8 To March 2023 8 91.0 90.1
#> 9 To June 2023 9 91.0 91.0
#> 10 To December 2023 15 91.2 92.2
#> 11 To March 2024 17 92.2 93.9
#> 12 To June 2024 18 92.2 92.9
#> 13 To September 2024 20 92 93.1
#> 14 To December 2024 22 92.0 92.8
#> 15 To March 2025 24 92.5 94.6
#> 16 To June 2025 26 92.4 94.6
