Skip to contents

Returns a tibble containing time series data for a specified metric and NHS area. The output includes both national-level (England) and local-level values across reporting periods, enabling direct comparison and trend analysis.

Usage

cvd_indicator_metric_timeseries(metric_id, area_id)

Arguments

metric_id

Integer (required). The ID of the metric to retrieve. Use cvd_indicator_metric_list() or cvd_indicator_data() to find valid IDs.

area_id

Integer (required). The ID of the NHS area to retrieve data for. Use cvd_area_list() or cvd_area_search() to find valid IDs.

Value

A tibble where each row represents a time period for a specific NHS area, including the observed metric value and associated target threshold. Columns include:

AreaCode

Character. Code for the NHS area (e.g., "U60510" for a PCN, "E92000001" for England).

AreaID

Integer. Unique identifier for the NHS area.

AreaName

Character. Name of the NHS area (e.g., "Salford South East PCN").

Count

Integer. Number of records included in the calculation (e.g., eligible patients).

Denominator

Numeric. Denominator used in the metric calculation.

Factor

Numeric. Scaling factor applied to the metric, if applicable. Often blank.

Numerator

Numeric. Numerator used in the metric calculation.

TimePeriodID

Integer. Identifier for the reporting period.

TimePeriodName

Character. Display label for the time period (e.g., "To June 2024").

Value

Numeric. Final calculated value for the metric in the given period.

TargetLabel

Character. Descriptive label for the target threshold (e.g., "Upper threshold for QOF").

TargetValue

Numeric. Target value to be achieved (e.g., 95).

If no data is available for the given parameters, a tibble describing the error is returned.

Details

This function is designed to support longitudinal analysis of indicator performance. It returns:

  • Time series values for the selected metric in the specified area

  • Corresponding national values (AreaID = 1)

  • Target thresholds (if defined) for benchmarking

The result includes one row per time period per area, allowing users to:

  • Visualise trends over time

  • Compare local performance against national averages

  • Track progress toward clinical targets

To find valid metric_id values, use cvd_indicator_metric_list() or cvd_indicator_data(). For valid area_id values, use cvd_area_list() or cvd_area_search().

Note

This function may take longer than 5 seconds to complete due to API response time.

See also

cvd_indicator_metric_list() to browse available metrics, cvd_area_list() and cvd_area_search() to find valid area IDs, cvd_indicator_data() to retrieve current metric values, cvd_indicator_priority_groups() for grouped indicator metadata, cvd_indicator_metric_area_breakdown() for area-level comparisons, cvd_indicator_person_timeseries() for person-level time series data

Examples

# \donttest{
# List data for Salford South East PCN (area ID 705) for 'AF: treatment with
# anticoagulants' for women people aged 60-79 years (metric ID 130):
cvd_indicator_metric_timeseries(metric_id = 130, area_id = 705) |>
  dplyr::select(AreaName, TimePeriodName, TimePeriodID, Value) |>
  tidyr::pivot_wider(
    names_from = AreaName,
    values_from = Value
  )
#> # A tibble: 16 × 4
#>    TimePeriodName    TimePeriodID England `Salford South East PCN`
#>    <chr>                    <int>   <dbl>                    <dbl>
#>  1 To March 2020                1    88.2                     85.9
#>  2 To March 2021                2    88.6                     86  
#>  3 To September 2021            3    88.9                     88.8
#>  4 To March 2022                4    89.3                     90  
#>  5 To June 2022                 5    89.4                     90.2
#>  6 To September 2022            6    89.6                     90.6
#>  7 To December 2022             7    90.0                     91.7
#>  8 To March 2023                8    91.0                     90.1
#>  9 To June 2023                 9    91.0                     91.0
#> 10 To December 2023            15    91.2                     92.2
#> 11 To March 2024               17    92.2                     93.9
#> 12 To June 2024                18    92.2                     92.9
#> 13 To September 2024           20    92                       93.1
#> 14 To December 2024            22    92.0                     92.8
#> 15 To March 2025               24    92.5                     94.6
#> 16 To June 2025                26    92.4                     94.6
# }