Indicator persons time series by indicator
Source:R/cvd_api_functions.R
cvd_indicator_person_timeseries.Rd
Returns data for the Inequalities Markers Time Series chart for the provided
indicator ID and area ID. Data
contains information about the chosen
target value as well as an array InequalityMarkers
which contains all the
time series data grouped into metric category types e.g. age group,
ethnicity, etc.
Details
CVD Prevent API documentation: Indicator person time series
See also
cvd_indicator_list()
, cvd_indicator_metric_list()
, cvd_indicator()
,
cvd_indicator_tags()
, cvd_indicator_details()
, cvd_indicator_sibling()
,
cvd_indicator_child_data()
, cvd_indicator_data()
, cvd_indicator_metric_data()
,
cvd_indicator_raw_data()
, cvd_indicator_nationalarea_metric_data()
,
cvd_indicator_priority_groups()
, cvd_indicator_pathway_group()
, #
cvd_indicator_group()
, cvd_indicator_metric_timeseries()
,
cvd_indicator_metric_systemlevel_comparison()
,
cvd_indicator_metric_area_breakdown()
Examples
# View the details of the time-series performance for indicator 'AF:
# treatment with anticoagulants' (ID 7) in Salford South East PCN (area ID
# 705), focussed just on the age group inequalities metrics:
cvd_indicator_person_timeseries(indicator_id = 7, area_id = 705) |>
dplyr::filter(
MetricCategoryTypeName == 'Age group',
!is.na(Value)
) |>
dplyr::select(MetricCategoryName, TimePeriodName, TimePeriodID, Value) |>
tidyr::pivot_wider(
names_from = MetricCategoryName,
values_from = Value
)
#> # A tibble: 11 × 5
#> TimePeriodName TimePeriodID `40-59` `60-79` `80+`
#> <chr> <int> <dbl> <dbl> <dbl>
#> 1 To March 2020 1 78.3 82.3 85
#> 2 To March 2021 2 91.3 82.3 84.8
#> 3 To September 2021 3 78 86.9 87.2
#> 4 To March 2022 4 76.6 86.8 90.2
#> 5 To June 2022 5 82.4 86.8 88.6
#> 6 To September 2022 6 80 86.6 90.6
#> 7 To December 2022 7 76.3 87.5 90.6
#> 8 To March 2023 8 72.7 87.4 91.1
#> 9 To June 2023 9 71.1 88.5 91.3
#> 10 To December 2023 15 74.4 88.9 90.6
#> 11 To March 2024 17 80.5 91.5 92.4